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We present and analyse a model for the spherical pulsations and translational motions
of a pair of interacting gas bubbles in an incompressible liquid. The model is derived
rigorously in the context of potential flow theory and contains all terms up to and
including fourth order in the inverse separation distance between the bubbles. We use
this model to study the cases of both weak and moderate applied acoustic forcing. For
weak acoustic forcing, the radial pulsations of the bubbles are weakly coupled, which
allows us to obtain a nonlinear time-averaged model for the relative distance between
the bubbles. The two parameters of the time-averaged model classify four different
dynamical regimes of relative translational motion, two of which correspond to the
attraction and repulsion of classical secondary Bjerknes theory. Also predicted is a
pattern in which the bubbles exhibit stable, time-periodic translational oscillations
along the line connecting their centres, and another pattern in which there is an
unstable separation distance such that bubble pairs can either attract or repel each
other depending on whether their initial separation distance is smaller or larger
than this value. Moreover, it is shown that the full governing equations possess the
dynamics predicted by the time-averaged model. We also study the case of moderate-
amplitude acoustic forcing, in which the bubble pulsations are more strongly coupled
to each other and bubble translation also affects the radial pulsations. Here, radial
harmonics and nonlinear phase shifting play a significant role, as bubble pairs near
resonances are observed to translate in patterns opposite to those predicted by
classical secondary Bjerknes theory. In this work, dynamical systems techniques and
the method of averaging are the primary mathematical methods that are employed.

1. Introduction
The mutual force between two pulsating gas bubbles in a liquid was first studied

by V. F. K. Bjerknes (1906) and C. A. Bjerknes (1915). They observed that this
mutual force, known today as the secondary Bjerknes force, caused the bubbles to
either attract or repel each other depending upon whether the bubble pulsations
were in phase or out of phase, respectively. In particular, when the frequency of an
applied acoustic field driving the pulsations was greater than or less than the natural
oscillation frequencies of both bubbles, then the bubbles were found to pulsate in
phase and attract, whereas if the driving frequency was in between the two natural
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frequencies, the bubbles would oscillate out of phase and repel each other. Moreover,
the magnitude of the force between two bubbles, directed along the line connecting
their centres, was found to be proportional to the inverse square of the distance
between them.

In recent years, it has been observed that two interacting gas bubbles in a liquid
can exhibit dynamics which are more complicated than the motions produced by
the classical secondary Bjerknes force (Zabolotskaya 1984; Oguz & Prosperetti 1990;
Doinikov & Zavtrak 1995; Mettin et al. 1997; Barbat, Ashgriz & Liu 1999; Harkin
2001). Numerical simulations of a nonlinear model of two pulsating and translating
bubbles (Oguz & Prosperetti 1990) demonstrate that increasing the acoustic forcing
can even reverse the direction of the force between two bubbles from that predicted by
the classical secondary Bjerknes force. Similar numerical results are also observed in
a model with fixed bubble centres (Mettin et al. 1997). In addition, two bubbles in an
incompressible liquid can undergo stable, periodic translational motion as has been
observed in the recent experiments of Barbat et al. (1999). Examination of the normal
modes of the linearized equations for fixed-centre bubbles (Zabolotskaya 1984) shows
that the natural frequencies increase with decreasing separation distance. Hence, when
the driving frequency is greater than both natural frequencies, the force may switch
from attractive to repulsive, since the driving frequency actually lies in between the
natural frequencies once the separation distance has become small enough. Finally,
two bubbles can maintain a fixed (small) separation distance, forming a stable bound
pair due to the second-harmonic component of the interaction force (Doinikov 1999),
which is strong for small separation distances. The underlying mechanisms governing
many of these new types of two-bubble dynamics are not well understood. Moreover,
the full range of possible dynamics for two interacting bubbles is not yet known.

In this work, we endeavour to shed new light on these questions by presenting a
joint analytical and numerical investigation of two interacting spherical gas bubbles
in a liquid to which a sound field is applied. We begin by deriving the potential
for this flow field with interaction terms up to and including fourth order in inverse
powers of the separation distance, see § 2 and Appendix A. Five coupled nonlinear
ordinary differential equations for the radial pulsations of the bubbles and for their
translations are then derived from this potential in § 3, that are also accurate up to
and including fourth order. Our analysis and simulations of the governing equations
then lead to a classification of many of the patterns of motion for both weak and
moderate applied acoustic forcing.

In the case of a weak applied sound field, the analysis predicts the existence of four
distinct dynamical regimes. The different observed dynamics are: (1) bubble pairs
that execute periodic translational motion about an equilibrium separation distance,
(2) bubble pairs that either attract (if they start sufficiently close) or repel (when
they start farther apart), due to the presence of an unstable equilibrium separation
distance, (3) bubble pairs that always attract (and collide), and (4) bubble pairs that
always repel; see §§ 4 and 5. Moreover, analysis of the final three regimes reveals that
bubble pairs for which the initial translational velocity is not zero may exhibit the
opposite dynamics over an initial transient period. For example, in the third regime,
there may be an initial period in which the two bubbles move away from each other
before they turn around and begin to move toward each other.

Two key parameters arise in the analysis of the weak forcing case in §§ 4 and
5. The four possible sign combinations of these parameters then give rise to the
four dynamical regimes described above. Their signs depend on the equilibrium
radii of the bubbles, their natural frequencies, and the acoustic forcing frequency.
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Most significantly, time-periodic translations of the bubble pair (first regime) are
found to occur when the driving frequency is greater than the natural frequencies
of both bubbles. The second regime corresponds to the case in which the driving
frequency is between the two natural frequencies but closer to the smaller one. Then,
the remaining two (Bjerknes) regimes correspond to the cases in which the driving
frequency is less than both natural frequencies (regime three), and in between but
closer to the larger frequency (regime four), respectively. This classification can be
thought of as an enhanced Bjerknes theory, which holds when the translational
velocities of the bubbles have magnitudes on the order of the inverse square of the
separation distance.

Next, we study the case of a moderately strong driving sound field in § 6. We identify
those terms from the full two-bubble model that are negligible under weak forcing, but
become significant as the forcing amplitude increases. In particular, the translational
velocities become larger, and hence so do the coupling terms in all of the equations
of motion. The four distinct types of dynamics found with weak forcing are still
observed to occur; however the boundaries of these regimes are significantly altered.
In particular, qualitatively different types of dynamics emerge due to resonances
between the volume oscillations of the bubbles and the driving sound field. In large
regions of parameter and phase space, it is observed that bubble pairs that attract
when weakly forced can be made to repel when strongly forced, and vice versa. For
example, for large forcing there is a two-to-one resonance region in which repulsion
is observed that emerges in that part of the parameter space corresponding to bubble
attraction with weak forcing. Moreover, we demonstrate that nonlinear phase-locking
of the bubble pulsations is a mechanism through which the mutual force between
two bubbles can reverse direction. This aspect of our work therefore explains and
quantifies the numerical observations made in Oguz & Prosperetti (1990). Moreover,
since our model allows both bubbles to translate, the bifurcation diagrams we present
extend the results of Mettin et al. (1997) for stationary bubbles in weakly compressible
liquids.

The results of this study are summarized and further discussed in § 7. There we
also explain in more detail how our work relates to recent analytical models and
experimental results for spherically symmetric bubbles that are sufficiently far apart.
For example, our classification of the weak forcing case resembles the classification
developed in Barbat et al. (1999), but the analysis and the two key parameters used to
classify bubble motions in that work differ from the analysis and parameters derived
in this study.

Many other two-bubble studies have appeared in the literature. The effects of
damping have been studied in Doinikov (1997b). Weak liquid compressibility has
been shown to lead to a dampening of the secondary Bjerknes force (Fujikawa &
Takahira 1986) in a model based on the potentials for two isolated bubbles and on
the assumption of fixed bubble centres. Subsequent work of Takahira, Fujikawa &
Akamatsu (1989) reports a difference between bubble responses to resonances caused
by primary and secondary Bjerknes forces. Compressibility of the surrounding liquid
also gives rise to two long-range forces (Doinikov & Zavtrak 1997) that become
important when the wavelength of the incident sound field is so short as to be
comparable to the bubble separation distance. These forces act along the direction
of the line of centres and of the gradient of the incident acoustic field, and they can
combine to create stable bound pairs in which the bubbles maintain a fixed separation
distance. These forces are negligible in the present work, since we consider forcing
fields with wavelengths significantly larger than the bubble separation distances.
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Shape deformations, which we do not examine in the present work, have also
been observed and analysed for different applied acoustic fields. In the case of
two initially identical bubbles and a step change in the externally applied pressure
field, typically either spherical-cap shapes or globally deformed bubbles are observed
(Pelekasis 1991; Pelekasis & Tsamopoulos 1993a) in the attractive regime, leading to
an eventual breakup of the bubbles. For oscillatory applied fields, Pelekasis (1991) and
Pelekasis & Tsamopoulos (1993b) report agreement with the classical linear theory
for low forcing amplitudes. By contrast, for oscillatory forcing with large amplitudes
and with frequency in between the natural (volume) frequencies, they identify a
subharmonic resonance at half the natural frequency of the bubble with smaller
period that significantly alters the shape deformations and the interaction force.

1.1. Classical secondary Bjerknes force

Here, we briefly review the classical theory of the secondary Bjerknes force. Consider
two spherical gas bubbles of radii R1(t) and R2(t) undergoing damped and driven
radial pulsations in a liquid of density ρ, viscosity µvis, and ambient hydrostatic
pressure p∞0 . Suppose that the bubble centres are fixed and that the centre-to-centre
distance between the bubbles is denoted by D. For large enough D, the pulsations
of each bubble do not influence those of the other, so that the radial oscillations of
each are governed by the well-known Rayleigh–Plesset equation (Plesset & Prosperetti
1977; Leal 1992; Leighton 1994):

RjR̈j + 3
2
Ṙ2
j =

1

ρ

[(
p∞0 +

2σ

Rj0

)(
Rj0

Rj

)3κ

− 4µ
Ṙj

Rj
− 2σ

Rj
− p∞0 + pA cos(Ωt)

]
, j = 1, 2.

The radial pulsations of the bubbles are damped by thermal, viscous and radiative
effects that are represented by the effective damping parameter µ = µth + µvis + µrad.
The equilibrium radius of bubble j is Rj0, the parameter σ denotes the surface tension
of the bubble interface and κ is the polytropic exponent of the gas inside the bubbles,
which is assumed to obey the ideal gas law. The pressure in the liquid far from the
bubbles is taken to be p∞0 − pA cos(Ωt).

The radial pulsations of each bubble affect the pressure field in the vicinity of the
other bubble. In the context of potential flow theory and for fixed separation distance
D, the force on bubble 1 due to the pulsations of bubble 2 is given by

F1(t) ≈ −2πρ
R2

1

D2

d

dt
(R1R

2
2Ṙ2). (1.1)

The classical secondary Bjerknes force is the time-averaged force 〈F1(t)〉 when both
bubbles undergo small-amplitude radial pulsations Rj(t) = Rj0[1+xj(t)] with |xj | � 1.
In that case, the Rayleigh–Plesset equations can be linearized:

ẍj + ζjẋj + ω2
j0xj = Pj cos(Ωt), j = 1, 2,

where the parameters are given by

ω2
j0 =

3κp∞0
ρR2

j0

+
2σ(3κ− 1)

ρR3
j0

, ζj =
4µ

ρR2
j0

, Pj =
pA

ρR2
j0

, (1.2)

and the natural oscillation frequency of a bubble, ωj0, is known as the Minnaert fre-
quency, see Minnaert (1933). The small-amplitude long-time solution of the Rayleigh–
Plesset equation is

Rj(t) = Rj0[1 + δj cos(Ωt+ ψj)], j = 1, 2, (1.3)
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Figure 1. Schematic diagram for two pulsating and translating bubbles.

where

δj =
Pj√

(ω2
10 − Ω2)2 + Ω2ζ2

j

and tanψj =
Ωζj

Ω2 − ω2
10

.

The classical expression for the secondary Bjerknes force follows directly from
substituting (1.3) into (1.1) and averaging over one acoustic driving cycle:

〈F1(t)〉 =
2πρΩ2R3

10R
3
20

D2
δ1δ2 cos(ψ1 − ψ2),

see Crum (1975). When the bubbles pulsate in phase, cos(ψ1−ψ2) is positive, and the
mutual force between the bubbles is attractive, whereas when the bubbles pulsate out
of phase, cos(ψ1 − ψ2) is negative, and the mutual force is repulsive.

2. Velocity potential for two pulsating, translating bubbles
Allowing the bubble centres to move, we now consider two spherically pulsating

gas bubbles immersed in an incompressible, irrotational fluid (figure 1). We assume
that the bubbles remain spherical and that they only translate along their line of
centres. Let R1(t) and R2(t) denote the time-dependent bubble radii, U1(t) and U2(t)
the translation speeds of the bubble centres, and D(t) the distance between the bubble
centres, where D(t) � R1(t) + R2(t). Local axisymmetric spherical coordinates, (r, θ),
attached to and translating with each bubble centre are also defined as shown in
figure 1.

The velocity potential, Φ, for the fluid flow velocity outside the bubbles, u = ∇Φ,
satisfies

∆Φ = 0 on {r1 > R1}⋂{r2 > R2},
∇Φ → 0 as r1, r2 →∞,
∂Φ

∂n1

= Ṙ1 +U1 cos θ1 on r1 = R1,

∂Φ

∂n2

= Ṙ2 +U2 cos θ2 on r2 = R2,

where n is an outward unit normal to the bubble surface and ∂/∂n ≡ n · ∇. The
velocity potential is determined by the method of images in Appendix A. In the local
axisymmetric spherical coordinates of bubble 1 it is given by the following expansion
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in powers of 1/D:

Φ(r1, θ1) = −R
2
1Ṙ1

r1
− U1R

3
1

2

cos θ1

r2
1

− R2
2Ṙ2

D
− R2

2Ṙ2P1(cos θ1)

D2

(
r1 +

R3
1

2r2
1

)
+
U2R

3
2

2D2

−R
2
2Ṙ2P2(cos θ1)

D3

(
r2

1 +
2R5

1

3r3
1

)
+
U2R

3
2P1(cos θ1)

D3

(
r1 +

R3
1

2r2
1

)
−R

2
2Ṙ2P3(cos θ1)

D4

(
r3

1 +
3R7

1

4r4
1

)
− R3

1R
2
2Ṙ2

2D4

+
U2R

3
2P2(cos θ1)

D4

(
3r2

1

2
+
R5

1

r3
1

)
+ O

(
1

D5

)
, (2.1)

where

P0(x) = 1, P1(x) = x, P2(x) = 1
2
(3x2 − 1), P3(x) = 1

2
(5x3 − 3x)

are the first four Legendre polynomials. In the local axisymmetric spherical coordi-
nates of bubble 2 the velocity potential is

Φ(r2, θ2) = −R
2
2Ṙ2

r2
− U2R

3
2

2

cos θ2

r2
2

− R2
1Ṙ1

D
+
R2

1Ṙ1P1(cos θ2)

D2

(
r2 +

R3
2

2r2
2

)
− U1R

3
1

2D2

−R
2
1Ṙ1P2(cos θ2)

D3

(
r2

2 +
2R5

2

3r3
2

)
− U1R

3
1P1(cos θ2)

D3

(
r2 +

R3
2

2r2
2

)
+
R2

1Ṙ1P3(cos θ2)

D4

(
r3

2 +
3R7

2

4r4
2

)
− R3

2R
2
1Ṙ1

2D4

−U1R
3
1P2(cos θ2)

D4

(
3r2

2

2
+
R5

2

r3
2

)
+ O

(
1

D5

)
. (2.2)

The expressions for the potentials are valid, respectively, in the vicinity of bub-
bles 1 and 2.

3. Equations of motion for two pulsating and translating spherical
gas bubbles

3.1. The Oguz–Prosperetti virial theorem

The Oguz–Prosperetti virial theorem is a tool that allows the two-bubble problem to
be projected onto a system of ordinary differential equations for R1, R2, U1 and U2.
In particular, we use the following refined version of the theorem.

Theorem 1. Consider a smooth, closed, time-dependent surface S immersed in an
inviscid potential flow with velocity potential Φ. Let u = ∇Φ represent the velocity field
of the flow and let n be the unit normal to S . Suppose f : S → R is any differentiable
function that can be extended to a small tubular neighbourhood of S . Then

d

dt

∫
S(t)

Φf dS =

∫
S(t)

Φ

[
Df

Dt
− fn · (∇u) · n

]
dS +

1

2

∫
S(t)

(u · u)f dS −
∫
S(t)

p′f dS

(3.1)

where p′ = (pL − p∞(t))/ρ, and pL, p∞(t) denote liquid pressures just outside S , and in
the far field, respectively.
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This result, which follows from equation (2.7) in Oguz & Prosperetti (1990), will
be a key ingredient in the development of a two-bubble model. Roughly speaking,
the theorem is obtained by combining the surface Reynolds transport theorem with
Bernoulli’s equation. A concise derivation is given in Appendix B. When applying
(3.1) it should be noted that the operator D/Dt = ∂/∂t+ u · ∇ represents the material
derivative with respect to the fluid velocity just outside the closed surface.

3.2. Radial pulsations

In the refined Oguz–Prosperetti virial theorem (3.1) let S denote the surface of a
bubble. If we choose the function f to be given by f = 1, the theorem becomes

d

dt

∫
S

Φ dS = −
∫
S

Φ[n · (∇u) · n] dS +
1

2

∫
S

u · u dS −
∫
S

p′ dS. (3.2)

Substituting the two-bubble potential (2.1) and evaluating the surface integrals, we
find up to order D−4

R1R̈1 + 3
2
Ṙ2

1 = p′1 +
U2

1

4
− 2R2Ṙ

2
2 + R2

2R̈2

D
+
R2

2Ṙ2(3U1 + 3U2 + 2Ḋ) + R3
2U̇2

2D2

−R
3
2U2(3U1 + 2Ḋ)

2D3
− 4R3

1R2Ṙ
2
2 + 6R2

1R
2
2Ṙ1Ṙ2 − 3R4

2Ṙ
2
2 + 2R3

1R
2
2R̈2

4D4
,

(3.3)

where

p′1 =
pL(R1)− p∞(t)

ρ
=

1

ρ

[(
p∞0 +

2σ

R10

)(
R10

R1

)3κ

− 4µ
Ṙ1

R1

− 2σ

R1

− p∞(t)

]
. (3.4)

Here, the far-field liquid pressure is p∞(t) = p∞0 − pA cos(Ωt). Also, we have added a
damping term to the radial pulsations with µ = µvis + µth + µrad denoting an effective
viscosity representing liquid viscosity, thermal damping and radiative damping. Note
that we are using an effective damping coefficient, and hence assuming that acoustic
streaming is not significant, see Doinikov (1997a).

In the same fashion, substituting Φ as given by (2.2) into (3.2) yields

R2R̈2 + 3
2
Ṙ2

2 = p′2 +
U2

2

4
− 2R1Ṙ

2
1 + R2

1R̈1

D
− R2

1Ṙ1(3U1 + 3U2 − 2Ḋ) + R3
1U̇1

2D2

+
R3

1U1(3U2 + 2Ḋ)

2D3
− 4R3

2R1Ṙ
2
1 + 6R2

2R
2
1Ṙ2Ṙ1 − 3R4

1Ṙ
2
1 + 2R3

2R
2
1R̈1

4D4
,

(3.5)

where

p′2 =
pL(R2)− p∞(t)

ρ
=

1

ρ

[(
p∞0 +

2σ

R20

)(
R20

R2

)3κ

− 4µ
Ṙ2

R2

− 2σ

R2

− p∞(t)

]
. (3.6)

(See Appendix C for an alternative derivation that does not depend on the Oguz–
Prosperetti theorem.)
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3.3. Bubble translation

To obtain equations governing translational motion, we choose f = P1(cos θ) in the
refined Oguz–Prosperetti virial theorem (3.1):

d

dt

∫
S

ΦP1(cos θ) dS =

∫
S

Φ
D

Dt
P1(cos θ) dS −

∫
S

Φ[n · (∇u) · n]P1(cos θ) dS

+
1

2

∫
S

(u · u)P1(cos θ) dS −
∫
S

p′P1(cos θ) dS.

The material derivative D/Dt should be evaluated in fixed laboratory frame coor-
dinates denoted by ~x. The flow quantities are given in a frame moving with the
bubble centre, whose local coordinates are denoted by ~r. Hence, we will need the
transformations (

∂

∂t

)
~r

=

(
∂

∂t

)
~x

+U · ∇~x, ∇~r = ∇~x.
For bubble 1, we substitute the two-bubble potential (2.1) and evaluate the surface

integrals, finding up to order D−4

d

dt

[
R3

1U1

3
+
R3

1R
2
2Ṙ2

D2
− R3

1R
3
2U2

D3

]
=

2R2
1Ṙ1R

2
2Ṙ2

D2
+

2R3
1R

2
2Ṙ2U1 − 2R3

2R
2
1Ṙ1U2

D3
− 3R3

1R
3
2U1U2

D4
, (3.7)

where terms of order D−5 and higher are omitted. Similarly, for bubble 2 we insert
the velocity potential given by (2.2) and evaluate the integrals to find

d

dt

[
R3

2U2

3
− R3

2R
2
1Ṙ1

D2
+
R3

2R
3
1U1

D3

]
= −2R2

2Ṙ2R
2
1Ṙ1

D2
+

2R3
2R

2
1Ṙ1U2 + 2R3

1R
2
2Ṙ2U1

D3
+

3R3
1R

3
2U1U2

D4
. (3.8)

An equivalent but more physically meaningful version of the translation equations
is obtained by rewriting them in the form

d

dt

[
M1

(
U1 +

3R2
2Ṙ2

D2
− 3R3

2U2

D3

)]
= 2πρR2

1R
2
2

[
2Ṙ1Ṙ2

D2
+

2R1Ṙ2U1 − 2R2Ṙ1U2

D3

−3R1R2U1U2

D4

]
+ FD1 , (3.9)

d

dt

[
M2

(
U2 − 3R2

1Ṙ1

D2
+

3R3
1U1

D3

)]
= 2πρR2

2R
2
1

[
−2Ṙ2Ṙ1

D2
+

2R2Ṙ1U2 + 2R1Ṙ2U1

D3

+
3R2R1U1U2

D4

]
+ FD2 , (3.10)

where

Mi = 2
3
πR3

i ρ, i = 1, 2, (3.11)

is the apparent mass of each bubble, and a drag term has been added, given by

FDi = −12πµvisRiUi, i = 1, 2,

which is the Levich drag (Magnaudet & Eames 2000) on a translating bubble.
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The distance between the bubble centres is governed by the kinematic relation

Ḋ = U2 −U1. (3.12)

Equations (3.3), (3.5), (3.7), (3.8) and (3.12) fully determine the dynamics of the
bubble pairs we study. They differ somewhat from the corresponding set of equations
in Oguz & Prosperetti (1990), who used a low-order two-bubble potential as an
illustration of how to apply their virial theorem.

4. An enhanced Bjerknes model in the weak forcing limit
In this section, we derive an enhanced Bjerknes model for two interacting gas

bubbles in the presence of a weak acoustic field. The model incorporates the mutual
coupling of the bubble radii and is self-consistent up to fourth order of accuracy
in inverse powers of the separation distance. We begin in § 4.1 by showing how
the equations of motion simplify in the presence of weak forcing. These simplified
equations are then further reduced using the method of averaging in two main steps.
For the first step, in § 4.2, we focus on fixed D and carry out a linear analysis on the
coupled radial equations. Specifically, we allow both the amplitudes and the phases
of the linear radial oscillations to depend upon the fixed separation distance, D. In
the second step, § 4.3, D is again time dependent and we employ the results of the
linear analysis to average each term in the translation equations over one acoustic
driving cycle. These averaged translation equations constitute the enhanced Bjerknes
model, which we analyse in § 5.

4.1. The weak forcing model

Up to this point, we have derived, to high order, equations of motion governing
bubble radii (3.3), (3.5) and translation speeds (3.7), (3.8) or (including drag) (3.9),
(3.10). For weak acoustic forcing (i.e. pA � p∞0 ), examination of the translation
equations suggests that typical translation speeds are themselves of O(1/D2). Thus
it is reasonable to conclude in this case that the terms in the radial equations (3.3)
and (3.5) involving U1 and U2 are typically of O(1/D4) or higher, and hence they are
relatively unimportant. This is a substantial simplification of the radial equations and
points out that, after the O(1/D) term, the next corrections are typically O(1/D4).
By the same reasoning, in the translation equations (3.7), (3.8), the terms after those
of order D−2 are found to be of order D−5. This yields the following weak forcing
model:

R1R̈1 + 3
2
Ṙ2

1 = p′1 − 2R2Ṙ
2
2 + R2

2R̈2

D
, (4.1)

R2R̈2 + 3
2
Ṙ2

2 = p′2 − 2R1Ṙ
2
1 + R2

1R̈1

D
, (4.2)

d

dt

[
M1

(
U1 +

3R2
2Ṙ2

D2

)]
= 4πρ

R2
1R

2
2Ṙ1Ṙ2

D2
, (4.3)

d

dt

[
M2

(
U2 − 3R2

1Ṙ1

D2

)]
= −4πρ

R2
2R

2
1Ṙ2Ṙ1

D2
, (4.4)

with Mi given by (3.11), p′i given by (3.4) and (3.6), and with equation (3.12) deter-
mining the evolution of the centre-to-centre distance between the bubbles.
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4.2. Linear analysis of two coupled Rayleigh–Plesset equations

When the separation distance between the bubbles is large compared to the bubble
radii, equations (4.1) and (4.2) are a pair of weakly coupled Rayleigh–Plesset equations.
Moreover, since the radial oscillations occur on a much faster time scale than changes
in the separation distance, we may for the time being proceed as if 1/D were a small,
constant coupling parameter. Hence, substituting Rj = Rj0[1 + xj(t)], j = 1, 2, into
the weakly coupled Rayleigh–Plesset equations (4.1), (4.2) and linearizing, we find

ẍ1 + ζ1ẋ1 + ω2
10x1 + ε1ẍ2 = P1 cos(Ωt), (4.5)

ẍ2 + ζ2ẋ2 + ω2
20x2 + ε2ẍ1 = P2 cos(Ωt), (4.6)

where ζj , ω
2
j0 and Pj are given by (1.2) and

ε1 =
R3

20

R2
10D

, ε2 =
R3

10

R2
20D

. (4.7)

Since Pj cos(Ωt) = Re[Pj eiΩt], we let xj(t) = δj cos(Ωt+ ψj) = Re[Xje
iΩt], j = 1, 2,

and the linearized system becomes[
ω2

10 − Ω2 + iΩζ1 −ε1Ω
2

−ε2Ω
2 ω2

20 − Ω2 + iΩζ2

] [
X1

X2

]
=

[
P1

P2

]
.

Solving for X1 and X2 we get

X1 =
(ω2

20 − Ω2 + iΩζ2)P1 + ε1Ω
2P2

(ω2
10 − Ω2 + iΩζ1)(ω

2
20 − Ω2 + iΩζ2)− ε1ε2Ω4

,

and

X2 =
(ω2

10 − Ω2 + iΩζ1)P2 + ε2Ω
2P1

(ω2
10 − Ω2 + iΩζ1)(ω

2
20 − Ω2 + iΩζ2)− ε1ε2Ω4

.

We can now compute

δ1 = ‖X1‖ = δ0
1

(
1 +

δ1
1

D
+ O

(
1

D2

))
,

δ2 = ‖X2‖ = δ0
2

(
1 +

δ1
2

D
+ O

(
1

D2

))
,

where ‖ · ‖ denotes the modulus and

δ0
1 =

P1√
(ω2

10 − Ω2)2 + Ω2ζ2
1

, δ1
1 =

R3
20P2Ω

2(ω2
20 − Ω2)

R2
10P1[(ω

2
20 − Ω2)2 + Ω2ζ2

2 ]
,

δ0
2 =

P2√
(ω2

20 − Ω2)2 + Ω2ζ2
2

, δ1
2 =

R3
10P1Ω

2(ω2
10 − Ω2)

R2
20P2[(ω

2
10 − Ω2)2 + Ω2ζ2

1 ]
.

The phases ψ1 and ψ2 can be obtained via ψj = arg(Xj), j = 1, 2, and are also
functions of D. Hence, for δj � 1, the long-time solutions of the linearized, weakly
coupled Rayleigh–Plesset equations are

Rj(t) ≈ Rj0
[

1 + δ0
j

(
1 +

δ1
j

D

)
cos(Ωt+ ψj(D))

]
, j = 1, 2. (4.8)

The importance of including the 1/D coupling term in the linear analysis is
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Figure 2. The solid curve is the radius of bubble 1 obtained from simulating the nonlinear equations
(4.1)–(4.2) with D fixed at D = 25R10. The dashed line is the radius calculated from the linearized,
coupled Rayleigh–Plesset equations (4.5)–(4.6). The dotted curve is the radius used in classical
Bjerknes theory, which is based on an uncoupled Rayleigh–Plesset equation. The R(t) axis is scaled
by R10.

demonstrated in figure 2. Two bubbles of equilibrium radii R10 = 120 µm (ω10/2π =
27.3 kHz) and R20 = 102 µm (ω20/2π = 32.2 kHz) are forced at an acoustic pressure
of pA = 5 kPa and a frequency of Ω/2π = 32.8 kHz. The effective damping of the
radial pulsations is taken to be µ = 20 × µvis = 20 × 0.001 kg m−1 s−1. The solid
curve in figure 2 is the radius of bubble 1 obtained from numerically simulating the
nonlinear equations (4.1), (4.2) with D fixed at D = 25R10. The dotted curve is the
linear solution of the uncoupled Rayleigh–Plesset equation for bubble 1 (i.e. it has
constant phase and amplitude). Neither the phase nor the amplitude of the dotted
curve agree well with the solid curve. In contrast, the dashed curve, which is the
solution of the linearized, coupled Rayleigh–Plesset equations (4.5)–(4.6), agrees well
with the (weakly) nonlinear solution.

4.3. Averaging analysis of bubble translation

In the weak forcing model, the translation variables U1(t), U2(t) and D(t) evolve on a
much slower time scale than do the bubble radii R1(t) and R2(t). It is thus reasonable
that the long-term behaviour, Ū1(t), Ū2(t), D̄(t), of the slow translation variables can be
represented well by time-averaging the radial coefficients in the translation equations
(4.3)–(4.4). Substituting the explicit small-amplitude pulsation solutions (4.8) into the
translation equations and integrating the radial coefficients over one forcing cycle
(T = 2π/Ω), we find

d

dt

[
M10Ū1 +

γ

D̄2

]
=

β

D̄2
,

d

dt

[
M20Ū2 +

γ

D̄2

]
= − β

D̄2
, (4.9)

where for j = 1, 2 we have Mj0 = (2/3)πR3
j0ρ+O(δ2

j ). The averaged parameters β and
γ are given in Appendix D, but since the parameter β is central to the subsequent
theory of this section, we state its expression here for both emphasis and convenience:

β = 2πρΩ2R3
10R

3
20 δ1δ2 cos(ψ1 − ψ2) + O(δ3

1 , δ
3
2) ≈ β0 +

β1

D̄
, (4.10)

where

β0 =
2πρΩ2R3

10R
3
20P1P2(W1W2 + Ω2ζ1ζ2)

(W 2
1 + Ω2ζ2

1 )(W 2
2 + Ω2ζ2

2 )
,

β1 =
2πρΩ4R3

10R
3
20P1P2(R10W2 + R20W1)

(W 2
1 + Ω2ζ2

1 )(W 2
2 + Ω2ζ2

2 )
,
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and Wj = ω2
j0 − Ω2. Substituting these expanded parameters into the averaged

translation equations (4.9), expanding the time derivatives and keeping terms of up
to order D̄−3 yields

M10
˙̄U1 =

β0

D̄2
+
β1

D̄3
, M20

˙̄U2 = − β
0

D̄2
− β1

D̄3
.

Note that the term involving γ is of higher order, and hence it has been neglected.

Solving for ˙̄U1 and ˙̄U2 we obtain the normal form of the averaged translation
equations,

˙̄U1 =
B2

D̄2
+
F2

D̄3
, ˙̄U2 = −B1

D̄2
− F1

D̄3
, (4.11)

where for j = 1, 2,

Bj =
3R3

j0Ω
2P1P2(W1W2 + Ω2ζ1ζ2)

(W 2
1 + Ω2ζ2

1 )(W 2
2 + Ω2ζ2

2 )
, (4.12)

Fj =
3R3

j0Ω
4P1P2(W1R20 +W2R10)

(W 2
1 + Ω2ζ2

1 )(W 2
2 + Ω2ζ2

2 )
. (4.13)

Equations (4.11)–(4.13), whose derivation is based on equation (4.8), extend the
classical secondary Bjerknes theory. The essence of the enhanced Bjerknes theory
of this section is that the phases and amplitudes of the coupled radial oscillations
depend on D̄, which leads to the presence of 1/D̄3 terms in the translation equations
whose coefficients are F1 and F2 as given above. By contrast, the standard Bjerknes
analysis explicitly assumes that both the phases and amplitudes of the radial pulsations
remain constant (i.e. do not depend upon relative distance D̄). As a consequence, the
translation equations obtained by standard Bjerknes analysis only contain 1/D̄2 terms
whose coefficients are B1 and B2 as given above.

5. Classification of the translational motions of two weakly forced bubbles
5.1. Predictions of the enhanced Bjerknes theory

The averaged translation equations (4.11) can be combined into a single second-

order equation for the relative distance between the bubbles. Since ¨̄D = ˙̄U2 − ˙̄U1, we
immediately obtain

¨̄D = − B
D̄2
− F
D̄3
, (5.1)

where

B = B1 +B2 =
3Ω2P1P2(R

3
10 + R3

20)(W1W2 + Ω2ζ1ζ2)

(W 2
1 + Ω2ζ2

1 )(W 2
2 + Ω2ζ2

2 )
,

F =F1 +F2 =
3Ω4P1P2(R

3
10 + R3

20)(W1R20 +W2R10)

(W 2
1 + Ω2ζ2

1 )(W 2
2 + Ω2ζ2

2 )
.

The Hamiltonian is H̄ = ˙̄D2/2 + V (D̄), with V (D̄) = −B/D̄ −F/(2D̄2). Through a
different argument, Barbat et al. (1999) arrived at a similar equation and used it to
explain their experimental observations; however, in that work, the values of B and
F are not given solely in terms of the material parameters of the problem. Here, we
have derived explicit expressions for B andF from first principles and we state them
in terms of the known liquid and acoustic properties (i.e. pA, Ω, ωj0, Rj0, ρ, µ).
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Figure 3. Phase planes of (5.1) (D̄ > 0) classifying possible trajectories of two interacting bubbles.
Note: in all § 5 figures, the D̄ axis is scaled by R10.

Equation (5.1) has a single fixed point at D̄ = −F/B, and we are interested in
physically relevant fixed points for which D̄ > 0. Moreover, the eigenvalues λ1,2 of
the equation linearized about this fixed point satisfy λ2 = B4/F3, and thus we see

that the equilibrium point at (D̄, ˙̄D) = (−F/B, 0) is a saddle if F > 0 and a centre if
F < 0. In figure 3, we examine the four distinct non-degenerate phase planes of (5.1)
for positive D̄.

The phase plane in figure 3(a) corresponds to the case in which the coefficients
B > 0 and F > 0. There is a critical (dashed) trajectory that separates the phase
half-plane. Trajectories above the critical trajectory will, as t→ ∞, have D̄ → ∞, and
trajectories below will have D̄ → 0 (although some of those trajectories may at first

have increasing D̄). To obtain an expression for the critical trajectory we require ˙̄D → 0

as D̄ → ∞. This is satisfied by H̄ = 0 or ˙̄D =
√

2B/D̄ +F/D̄2 (escape velocity). So,

in this case, two bubbles will eventually collide when Ū2 − Ū1 <
√

2B/D̄ +F/D̄2,
and they will move apart forever when the inequality is reversed.

The phase plane in figure 3(b) corresponds to the case in which the coefficients
B < 0 and F > 0. There is a saddle point on the D̄-axis whose stable and unstable
manifolds partition phase space into four regions. The energy of the saddle point is
given by H̄ = B2/(2F). The fate of a bubble pair is determined by which of the
four regions its trajectory lies within. In this case we see that the possible patterns
of motion are: attraction, repulsion, repulsion followed by attraction, and attraction
followed by repulsion.
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Figure 4. The coefficients B and F of (5.1), along with the fixed point at D̄ = −F/B, are shown
for a wide range of forcing frequencies. The coefficient B has units of m3 s−2, and F has units of
m4 s−2.

In figure 3(c), the coefficients of the planar system are B < 0 and F < 0. All
trajectories in the phase plane eventually escape to infinity.

Lastly, in figure 3(d), the planar system coefficients are B > 0 andF < 0. The fixed
point is a centre which is surrounded by a family of nested, closed trajectories. Thus,
in this case, it is possible that the relative distance between two translating bubbles is
periodic and stable. It should be noted that our analysis breaks down if the bubbles
approach too closely; thus the detailed behaviour for cases in which D̄ becomes small
is not predicted by our model.

5.2. Dependence of B and F on acoustic forcing frequency

Next we examine the dependence of B and F on forcing frequency. The values of
B, F and the fixed point at D̄ = −F/B are shown in figure 4 for a wide range
of acoustic forcing frequencies Ω. The values of the parameters used to generate the
figure are R10 = 150 µm (ω10/2π = 21.8 kHz), R20 = 130 µm (ω20/2π = 25.2 kHz),
pA = 2 kPa and the total effective damping of the radial pulsations is µ = 20× µvis =
20× 0.001 kg m−1 s−1.

Figure 4(a) is a graph of the classical Bjerknes coefficient versus driving frequency.

More specifically, classical Bjerknes theory yields ¨̄D = −B/D̄2 and predicts that when
two bubbles are both being driven either below or above their natural frequencies,
they will attract each other. This is seen to be the case in figure 4(a), for in order
to have B > 0 either Ω < ω10 < ω20 or ω10 < ω20 < Ω. Standard Bjerknes theory
also predicts that when one bubble is being driven below its natural frequency and
the other bubble is being driven above its, the bubbles will repel. This corresponds
precisely to the domain on which B < 0.
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Figure 5. The effect of weak damping, µ = µvis = 0.001 kg m−1 s−1, on the coefficients B, F and
the fixed point D̄ = −F/B. The parameters are R10 = 150 µm, R20 = 130 µm and pA = 2 kPa.

The coefficient F arising from enhanced Bjerknes theory is graphed versus Ω/2π
in figure 4(b). We emphasize that the existence of the stable and unstable equilibrium
points for (5.1) is only possible because of the presence of the F/D̄3 term.

The fixed point at D̄ = −F/B is graphed versus Ω/2π in figure 4(c) (of course,
only positive values of D̄ are physical). The equilibria that occur slightly to the right
of the resonance frequency ω10 are unstable, whereas those slightly to the right of the
resonance at ω20 are stable. We also observe that as the forcing frequency approaches
either natural frequency from above, the magnitudes of the equilibria become larger.
It is thus seen that stable bound pair oscillations, corresponding to figure 3(d), occur
when the forcing frequency is slightly larger than the larger of the two Minnaert
frequencies of the bubbles.

The next set of plots in figure 5 illustrate how the coefficients B,F and the fixed
point D̄ = −F/B behave in the limit of weak damping of the radial oscillations
(i.e. µ = µvis). We observe that while the specific values of B and F change over
the same range of frequencies as compared to the larger damped simulations shown
in figure 4, the four combinations of signs of B and F (i.e. ++, +−, −+, −−)
still occur for a specific partition of the forcing frequency domain. Hence, all of the
qualitative motions for two bubbles that have been discussed in this section are all
still possible for two weakly damped bubbles.

The results of figures 4 and 5 are based upon a pair of bubbles having unequal
equilibrium radii R10 = 150 µm and R20 = 130 µm. It turns out that, for two bubbles
having the same equilibrium radius, only two phase planes are encountered over
a wide range of forcing frequencies (figure 6). They are the phase planes having
B > 0, F > 0 and B > 0, F < 0. When the bubbles are forced below their natural
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Figure 6. The coefficients B, F and the fixed point D̄ = −F/B when the equilibrium radii of the
bubbles are equal, R10 = R20 = 100 µm (ω10/2π = ω20/2π = 32.8 kHz). The other parameters are
pA = 2 kPa and µ = 20× 0.001 kg m−1 s−1.

frequency, both B and F are positive, and hence, based upon the initial velocities of
the bubbles, they can either attract, repel, or repel then attract. Alternatively, when
the bubbles are forced at a frequency above their natural frequency, B > 0 and
F < 0, and therefore the enhanced Bjerknes theory predicts oscillatory motion of the
two bubbles around a stable separation distance (provided that D̄ does not become
too small for the theory to break down).

5.3. Bifurcation diagram for summarizing patterns of translation

The enhanced Bjerknes theory completely classifies (via figure 3) the fate of a pair
of interacting bubbles through the signs of the parameters B and F. For fixed
equilibrium bubble radii, figures 4, 5 and 6 illustrate the dependence of B and F
upon forcing frequency Ω. By contrast, in figure 7 we instead choose to fix the forcing
frequency and illustrate the dependence of B andF upon equilibrium radii (R10, R20).
We consider equilibrium bubble radii between 1 and 200 µm, whose radial oscillations
are damped with µ = 20 × µvis and driven at a frequency of Ω/2π = 32.8 kHz. The
solid curves partitioning the (R10, R20)-plane in figure 7 are given implicitly by

B = 0⇒ (ω2
10 − Ω2)(ω2

20 − Ω2) + Ω2ζ1ζ2 = 0,

F = 0⇒ (ω2
10 − Ω2)R20 + (ω2

20 − Ω2)R10 = 0,

where ω2
j0, ζj are given by (1.2).
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Figure 7. Relative signs of B and F for a wide range of equilibrium radii. The parameters are
Ω/2π = 32.8 kHz and µ = 20× µvis = 20× 0.001 kg m−1 s−1.

5.4. Numerical simulations of the weak forcing model

In this section we compare analytical predictions of enhanced Bjerknes theory to
direct numerical simulations of the weak forcing model (4.1)–(4.4) and (3.12). More
specifically, for selected bubble pairs corresponding to (R10, R20) points in figure 7,
we compare the numerical time series of the weak forcing model to the outcome
predicted by the bifurcation diagram.

The first bubble pair chosen for simulation yields perhaps the most interesting
pattern of motion predicted by enhanced Bjerknes theory: the oscillation of two
bubble centres about a stable equilibrium separation distance. Consider in figure 8
two unequal sized bubbles of equilibrium radii R10 = 120 µm (ω10/2π = 27.3 kHz)
and R20 = 102 µm (ω20/2π = 32.2 kHz). The bubbles are assumed to be damped
by an effective viscosity µ = 20 × µvis and forced at frequency Ω/2π = 32.8 kHz
and amplitude pA = 500 Pa. Enhanced Bjerknes theory predicts that B > 0, F < 0
(figure 7), and hence, the two bubble centres will undergo oscillatory motion around
the stable separation distance D̄centre = −F/B = 23R10. In figure 8, the numerical
simulation of the unaveraged weak forcing equations (3.12)–(4.4) shows excellent
agreement with the prediction of enhanced Bjerknes theory.

Next, we confirm the prediction that the oscillatory translational motion seen in
the solid curves of figure 8 (and of figure 12 below) truly is a consequence of the
coupled radial pulsations. For this purpose, in figure 9, we numerically simulate the
weak forcing model with the modification that the Rayleigh–Plesset equations are
decoupled. The parameters are exactly the same as those of figure 8, which gave rise
to oscillations in D(t). The figure shows that two bubbles that pulsate independently
do not translate in an oscillatory manner.

Among the other predictions of enhanced Bjerknes theory is the possibility of an
unstable equilibrium distance between two bubbles. Recall from § 4.3 the averaged

equations M10
˙̄U1 = β/D̄2 and M20

˙̄U2 = −β/D̄2. Thus, we can interpret the sign of β
as the direction of the mutual force between the bubbles, a positive sign indicating
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Figure 9. Numerical simulation of the weak forcing model with decoupled radial pulsations
versus the weak forcing model with coupled pulsations.

attraction and a negative sign repulsion. Consider in figure 10 the graph of β versus
centre-to-centre distance for a pair of bubbles of equilibrium radii R10 = 101.5 µm
(ω10/2π = 32.3 kHz) and R20 = 80 µm (ω20/2π = 41.1 kHz). We see that for D̄ smaller
than D̄saddle = −F/B = 37.7R10, the sign of β is positive and the bubbles attract each
other. Similarly, for D̄ larger than D̄saddle, the bubbles repel. Therefore, we expect an
unstable equilibrium located at D̄saddle = 37.7R10.

The numerical simulations shown in figure 11 confirm that the unaveraged weak
forcing model also exhibits the behaviour associated with an unstable equilibrium,
D̄saddle. For the bubble pair of figure 10, the enhanced Bjerknes theory predicts that
B < 0, F > 0. Hence, the two bubbles will either attract or repel depending upon
whether their initial separation is smaller or larger, respectively, than the saddle
point D̄saddle = −F/B = 37.7R10. In the top curve of figure 11, the initial separation
is D(0) > D̄saddle, and the bubbles repel forever. In the bottom curve, the initial
separation is D(0) < D̄saddle, and the bubbles attract.
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Figure 11. The solid curves represent two solutions for D(t) with initial conditions on different sides
of an unstable equilibrium separation at D̄saddle = 37.7R10. The dashed curves are the predictions
for D̄(t) based upon the averaged equations.

6. Nonlinear secondary Bjerknes force in the limit of moderate acoustic
forcing

6.1. The breakdown of weak forcing theory

As the external forcing pressure increases, the size of the separation distance D needed
for either the Bjerknes theory or the enhanced Bjerknes theory to be valid increases.
We now quantify how the weak forcing assumption begins to break down when the
forcing pressure is taken to be moderately large, even for bubbles that are relatively
far apart.

Figure 12 demonstrates the gradually increasing disagreement between the averaged
and unaveraged translation equations as forcing pressure increases. The same par-
ameters as in figure 8 are used except the forcing pressure is increased to pA = 1000 Pa.
The velocities are no longer asymptotically given by U ∼ 1/D2, and the oscillation
amplitudes of the solutions to the unaveraged equations are slowly growing. Moreover,
since the forcing is larger, the amplitudes of the radial oscillations (not shown in the
figure) are larger as well. Recall that the amplitude of the radial oscillations is the
small parameter employed in our averaging analysis. The averaging theorem then
anticipates that our averaged solution (dashed curves) will break down sooner as the
averaging parameter gets larger. This is clearly seen in figure 12 where the averaged
solution breaks down near 10 000 forcing cycles, whereas for pA = 500 Pa (figure 8)
the averaged solution was accurate over 20 000 forcing cycles.
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Figure 12. Comparison between the averaged (dashed) versus unaveraged (solid, greyish) weak
forcing model as the weak forcing assumption becomes invalid.

6.2. Coupling translation into the radial oscillations

For a two-bubble model valid in the limit of moderate acoustic forcing, terms
involving U1 and U2 in the radial equations of motion (3.3), (3.5) must be included.
This provides direct coupling of translation to radial pulsations (as opposed to the
indirect coupling coming through terms involving D). Hence, the following fully
coupled model derived in § 3 will be examined in the rest of this section:

coupled Rayleigh–Plesset equations

R1R̈1 + 3
2
Ṙ2

1 = p′1 − 2R2Ṙ
2
2 + R2

2R̈2

D
+
U2

1

4
+
R2

2Ṙ2(3U1 + 3U2 + 2Ḋ) + R3
2U̇2

2D2
, (6.1)

R2R̈2 + 3
2
Ṙ2

2 = p′2 − 2R1Ṙ
2
1 + R2

1R̈1

D
+
U2

2

4
− R2

1Ṙ1(3U1 + 3U2 − 2Ḋ) + R3
1U̇1

2D2
; (6.2)

translation equations

d

dt

[
R3

1U1

3
+
R3

1R
2
2Ṙ2

D2

]
=

2R2
1Ṙ1R

2
2Ṙ2

D2
, (6.3)

d

dt

[
R3

2U2

3
− R3

2R
2
1Ṙ1

D2

]
= −2R2

2Ṙ2R
2
1Ṙ1

D2
. (6.4)

We saw in figure 7 that the enhanced Bjerknes theory partitioned the R10, R20

parameter space into disjoint regions which completely classified the possible long-
term motions of weakly forced bubble pairs. Here, we numerically simulate the above
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Figure 13. Three time-series are shown for the relative distance as the forcing pressure increases:
pA = 10 kPa (a), pA = 46 kPa (b), pA = 50 kPa (c). The equilibrium radii are R10 = 105 µm
(ω10/2π = 31.3 kHz), R20 = 50 µm (ω20/2π = 66 kHz) and the forcing frequency is Ω/2π = 32.8 kHz.
The D-axis is given in mm.

fully coupled model for the same forcing frequency, Ω/2π = 32.8 kHz, as in figure 7,
but for higher forcing pressures.

We carry out three numerical simulations for a bubble pair having equilibrium
radii R10 = 105 µm (ω10/2π = 31.3 kHz) and R20 = 50 µm (ω20/2π = 66 kHz), and
effective damping µ = 20×µvis. For weak acoustic forcing, this bubble pair lies near the
leftmost boundary of the lower right quadrant of figure 7, and thus enhanced Bjerknes
theory predicts an unstable equilibrium at D̄saddle = 1.1 mm. For an initial separation
distance D(0) = 4 mm > D̄saddle, the bubbles will repel forever. This is seen in (a) of
figure 13 where the bubbles are forced at a relatively low pressure of pA = 10 kPa.
Increasing the forcing pressure to pA = 46 kPa yields an interesting pattern of motion.
In figure 13(b) we see that the bubble pair undergoes an initial period of oscillatory
translational motion, followed by mutual repulsion. If the forcing pressure is further
increased to pA = 50 kPa (figure 13c), the bubbles attract and collide. Hence, moderate
to strong acoustic forcing can reverse the long-term behaviour of two bubbles from
that predicted by both classical and enhanced Bjerknes theory.

6.3. Bifurcation diagrams and resonance zones

In this section, we generate bifurcation diagrams that classify the initial motions of
moderately forced bubbles. The numerical simulations of bubble pairs in this section
are carried out with the moderate forcing model (6.1)–(6.4) and (3.12). It is first
checked in figure 14(a) that the moderate forcing model, in the limit of weak forcing,
pA = 5 kPa, can produce the same bifurcation diagram as does the weak forcing model
(figure 7). For each point in the R10, R20 parameter space, the moderate forcing model
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Figure 14. Bifurcation diagrams for bubble pairs being forced at Ω/2π = 32.8 kHz. In (a), the
forcing is pA = 5 kPa and in (b), pA = 50 kPa. The bubble pairs in the white regions initially attract
each other, in the black regions they initially repel.

is integrated for a fixed time of 100 driving cycles. The driving frequency and the
effective damping are chosen to be the same values as those used to generate figure 7,
namely Ω/2π = 32.8 kHz and µ = 20× µvis. Initially, the bubbles are resting at their
equilibrium radii and have a separation distance of 4 mm. When the simulation
for a particular bubble pair is finished, if the two bubbles are farther apart than
initially, a black dot is assigned to the point in parameter space. If they become
closer, the point is left white. Given the complexity of the moderate forcing model, we
have only integrated each initial condition for some short time interval. Therefore, the
bifurcation diagram only contains information about the initial attraction or repulsion
of bubble pairs. Using the procedure just described, we next generate a bifurcation
diagram for increased acoustic forcing, pA = 50 kPa. We see in figure 14(b), that under
moderate acoustic forcing the R10, R20 parameter space is still roughly divided into
four regions.

The effects of the harmonic resonances of the radial pulsations are now clearly
visible. In particular, these resonances cause a region in the lower left quadrant to
turn black. This is evidence that bubble pairs that would attract according to the
classical secondary Bjerknes theory, might repel due to nonlinear effects. To see that
this is a harmonic resonance effect, note that the equilibrium radii of the bubbles
in that region (roughly around 50 µm) are about half the size of the bubbles which
resonate at the forcing frequency Ω. Since the resonant frequency of a bubble is
inversely proportional to its radius, these 50 µm bubbles have a natural frequency
which is almost twice the forcing frequency. Under moderate-amplitude forcing, they
therefore exhibit a strong response due to a 2 : 1 resonance. It is also noteworthy
that the dark regions are located above or below the main diagonal in figure 14
(right). This suggests that one of the bubbles is slightly larger than (roughly) 50 µm
and the other slightly smaller. As such their natural frequencies actually lie on either
side of 2Ω. The resulting repulsion (black region) is thus probably due to the fact
that the bubbles have strong components with frequency 2Ω which are out of phase
with respect to one another. The occurrence of a second harmonic resonance in the
presence of moderate acoustic forcing has also been observed in Oguz & Prosperetti
(1990).
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The boundaries separating the various regions also become more intricate. Reso-
nance tongues penetrate into the boundaries, so that parts of the regions that were
previously black for lower forcing have become white, and vice versa. This is rem-
iniscent of the behaviour observed in figure 13. Moreover, the deformations of the
boundaries between the various regions are qualitatively similar to the boundaries
seen in bifurcation diagrams presented by Mettin et al. (1997), albeit there the bubble
centres are fixed. When bubble pairs are chosen which are well within the white or
dark regions in the bifurcation diagram, their long-time dynamics generally follow
the predictions based on the short-time simulations summarized in figure 14.

Lastly we illustrate, in figure 15, the effect of nonlinear phase shifting on the long-
term fate of a bubble pair. Here, the nonlinear phases of bubbles 1 and 2 are defined
through the relations

ψ̃1 = arctan

(
Ṙ1

R1 − R10

)
, ψ̃2 = arctan

(
Ṙ2

R2 − R20/R10

)
.

In figure 15, two numerical simulations of the moderate forcing model are carried out
with different forcing pressures for a bubble pair of equilibrium radii R10 = 53 µm
(ω10/2π = 62.2 kHz) and R20 = 45 µm (ω20/2π = 73.4 kHz), and forcing frequency
Ω/2π = 32.8 kHz. The bubbles are initially at rest with a separation distance of 4 mm.
For low-amplitude forcing, pA = 2 kPa, in figure 15(a, b), we see that phase locking of
the pulsations (a) leads to attraction of the bubbles (b). In figure 15(c, d), the forcing
amplitude is larger, pA = 25 kPa, and the phase anticoherence of the pulsations (c)
leads to mutual repulsion of the bubbles (d).
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7. Conclusions
Using ideas and techniques from dynamical systems theory, we have explored

the problem of two spherical bubbles in a sound field that are coupled through their
pulsations and translations. Employing a refined version of the Oguz–Prosperetti virial
theorem, along with a two-bubble velocity potential containing interaction terms, we
were able to derive the equations of motion for the radii and translation speeds of
each bubble that are accurate up to and including the fourth order in the inverse
separation distance. Analysis of these equations has led to the development of an
enhanced Bjerknes theory for the case of a liquid subject to weak acoustic forcing. In
particular, the equations for the translational velocities of the bubbles were averaged
over one cycle of the acoustic forcing to obtain a model that recovers the classical
Bjerknes force to leading order and accurately captures the next higher-order terms,
cubic in inverse separation distance, which become important for smaller separation
distances. Along the way, we showed and made use of the fact that the amplitudes
and phases of the radial oscillations depend upon centre-to-centre distance between
the bubbles.

This enhanced Bjerknes model contains two key parameters, one of which, called
B, arises in standard Bjerknes theory, while the other, F, is directly linked to the
nonconstant amplitudes and phases of the radial oscillations. By analysing all four
sign combinations of these two key averaging parameters, we were able to classify
all of the possible translational motions for two weakly forced bubbles. This analysis
predicted the existence of a regime in which there is an unstable equilibrium separation
distance, as well as the presence of a regime in which the bubbles exhibit bounded,
time-periodic oscillations. Finally, it was also verified that the unaveraged translation
equations included the same types of behaviour as the averaged translation equations.

The analysis was continued into the moderately strong forcing regime with the
assistance of numerical simulations. We placed particular emphasis on the 2 : 1 res-
onance zone created by large-amplitude forcing, in which bubbles repel, rather than
attract each other as the classical theory predicts. Previous studies have indicated that
the pattern of motion for a bubble pair can be dramatically affected by the strength
of the acoustic forcing. Our numerical simulations confirmed these observations by
showing that bubble pairs can move in directions opposite to that predicted by
classical (and enhanced) Bjerknes theory in the presence of strong forcing.

One of the key features of the enhanced Bjerknes theory is that stable bound
pair oscillations are observed when the driving frequency is larger than both natural
frequencies (i.e. uncoupled Minnaert frequencies). There are two ways to think about
how this type of behaviour might be possible. One approach is to focus on the
D-dependence of the coupled natural modes. In that case, suppose that the natural
frequencies of the bubbles start smaller than the forcing frequency, i.e. ωN1 < ωN2 < Ω.
As the bubbles approach each other, the coupled natural frequencies change. In
particular, the coupled ωN2 increases as D decreases. This may be calculated from the
following formula:

ω2
Nj =

1

2(1− ε2)

[
ω2

10 + ω2
20 ±

√
(ω2

10 − ω2
20)

2 + 4ω2
10ω

2
20ε

2

]
, j = 1, 2, (7.1)

where ε2 = ε1ε2 and εj is defined in § 4.2 (see Zabolotskaya 1984 and Appendix C of
Harkin 2001). Therefore there exists a possibility that the larger natural frequency can
grow to exceed Ω, in which case the natural frequencies will be on opposite sides of
the forcing frequency, and hence out of phase. In figure 16(a), we show that ωN2 −Ω
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Figure 16. (a) The natural frequency, ωN2, is plotted versus D using formula (7.1). (b) The enhanced
Bjerknes theory force parameter, β, is plotted versus D. The parameter values are R10 = 120 µm
(ω10/2π = 27.3 kHz), R20 = 102 µm (ω20/2π = 32.2 kHz) and Ω/2π = 32.8 kHz. The D-axis is scaled
by R10.

does change sign. For the parameter values shown this occurs near D = 8, but as we
see in figure 8, the minimum D during the oscillations is approximately 10. Of course,
we must keep in mind that the formula for ωN2 is only the leading-order formula for
large D whereas here D is already relatively small.

A second way is to determine where the sign of the force changes by looking at
the coefficient β as in figure 10. In figure 16(b), we see that the force between the
bubbles changes sign when the parameter β passes through zero, which occurs at
approximately D = 20, and this agrees qualitatively with the above results for the
stable bound pair oscillations.
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Appendix A. Potential flow and the Weiss sphere theorem
The velocity potential for the flow around two pulsating and translating bubbles is

obtained in this Appendix. It is used in § 3 in developing a model for two interacting
bubbles.

A.1. The velocity potential for flow outside two bubbles

The velocity potential, Φ, for a flow containing two pulsating and translating bubbles
consists of two parts,

Φ = ΦR + ΦT ,

one part representing the purely radial pulsations of the bubbles, ΦR , and another
part giving the contribution of bubble translation, ΦT . Moreover, each part can be
expanded separately via the method of images:

ΦR = ΦR1 + ΦR2 + ΦR12 + ΦR21 + ΦR121 + ΦR212 + (higher-order image terms)
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Legendre expansiony
Legendre expansiony

Legendre expansionyWeiss theoremy Weiss theoremy
ΦR1 (r1, θ1) → ΦR1 (r2, θ2) → ΦR12(r2, θ2) → ΦR12(r1, θ1) → ΦR121(r1, θ1) → ΦR121(r2, θ2)→
ΦR2 (r2, θ2) → ΦR2 (r1, θ1) → ΦR21(r1, θ1) → ΦR21(r2, θ2) → ΦR212(r2, θ2) → ΦR212(r1, θ1)→

Table 1. Sequence of calculations involved in the method of images.

and

ΦT = ΦT1 + ΦT2 + ΦT12 + ΦT21 + ΦT121 + ΦT212 + (higher-order image terms).

In the rest of this Appendix, we calculate the individual terms in these expansions.
Starting with the velocity potential for an isolated bubble, the calculation consists of
two alternating steps. Recall that each bubble possesses a local axisymmetric spherical
coordinate system (figure 1). For step one, we perform a Legendre expansion from
one local coordinate system to the other. Step two applies the Weiss sphere theorem,
which will be explained shortly, to the expanded potential in order to obtain an image
potential. With the image potential, we repeat step one, and so forth. This procedure
is illustrated in table 1.

A.2. Contribution from radial pulsations, ΦR

We first consider the part of the velocity potential due only to the radial pulsations
of the two bubbles. To begin, suppose just bubble 1 is immersed in a quiescent fluid.
The velocity potential of the fluid due solely to radial pulsations of bubble 1 is then

ΦR1 (~r1) = −R
2
1Ṙ1

r1
. (A 1)

Similarly, potential generated by radial pulsations of only bubble 2 would be

ΦR2 (~r2) = −R
2
2Ṙ2

r2
. (A 2)

To carry out the calculation further we need to be able to transform coordinates

from (r1, θ1) to (r2, θ2) and vice versa (see figure 1). Note from figure 1 that~r2 =~r1−~d
where ~d = (0, 0, D). Assuming that R1 + R2 � D we can expand ΦR2 in the local
coordinates of bubble 1 as

ΦR2 (r1, θ1) = − R2
2Ṙ2

|~r1 −~d |
= −R2

2Ṙ2

∞∑
n=0

rn1
Dn+1

Pn(cos θ1), (A 3)

where Pn is the nth Legendre polynomial. Similarly, we have ΦR1 in the local coordi-
nates of bubble 2,

ΦR1 (r2, θ2) = − R2
1Ṙ1

|~r2 +~d | = −R2
1Ṙ1

∞∑
n=0

(−1)n rn2
Dn+1

Pn(cos θ2). (A 4)

Equations (A 1) and (A 2) (or their expansions) are the first terms in the series
expansion of the velocity potential, ΦR , for the flow containing two pulsating bubbles.
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The next terms of the series, ΦR12 and ΦR21, are image terms resulting from these first
terms. In order to calculate them, we use a classical result due to Weiss (1944).

A.3. The Weiss sphere theorem

Theorem (Weiss). If a sphere, S , whose surface is given by r = a, is immersed in an
arbitrary irrotational flow, then one can write the velocity potential of the new flow as

Φ = Φu + Φp.

Here Φu represents the undisturbed flow without the sphere and Φp represents the per-
turbation to the flow caused by the sphere. The latter can be expressed as

Φp(~r ) =
a

r
Φu

(
a2

r2
~r

)
− 2

ar

∫ a

0

λΦu

(
λ2

r2
~r

)
dλ.

A similar result in two-dimensional potential flow is the well-known circle theorem of
Milne-Thompson (1940). As an example of the use of the Weiss theorem, we derive a
formula that is needed in subsequent calculations. Consider the flow associated with
the undisturbed velocity potential

Φu = rnPn(cos θ).

If we insert a sphere of radius R into the flow, the new flow with the sphere derives
from the velocity potential Φ = Φu + Φp and the Weiss sphere theorem gives

Φp =
R

r
Φu

(
R2

r2
~r

)
− 2

Rr

∫ R

0

λΦu

(
λ2

r2
~r

)
dλ

=
R

r

[
R2n

r2n
rnPn(cos θ)

]
− 2

Rr

∫ R

0

λ

[
λ2n

r2n
rnPn(cos θ)

]
dλ

=
n

n+ 1

R2n+1

rn+1
Pn(cos θ). (A 5)

A.4. The image terms ΦR12 and ΦR21

The potential ΦR2 will induce an image ‘charge’ inside bubble 1 whose potential is ΦR21.
Likewise, the potential ΦR1 will induce an image charge inside bubble 2 with potential
ΦR12. To obtain the Legendre expansion of these image potentials we apply formula
(A 5) term by term to the expansions (A 3) and (A 4). Taking ΦR2 given by (A 3) to be
the undisturbed potential, and taking bubble 1 as the sphere being introduced into
the flow, applying formula (A 5) yields

ΦR21(r1, θ1) = −R2
2Ṙ2

∞∑
n=0

n

n+ 1

R2n+1
1

rn+1
1 Dn+1

Pn(cos θ1).

Likewise, taking ΦR1 given by (A 4) to be the undisturbed potential, and inserting
bubble 2 into its flow, then formula (A 5) gives

ΦR12(r2, θ2) = −R2
1Ṙ1

∞∑
n=0

(−1)nn

n+ 1

R2n+1
2

rn+1
2 Dn+1

Pn(cos θ2).

Furthermore, upon transforming coordinates again, one may check that

ΦR21(r2, θ2) = −R
3
1R

2
2Ṙ2

2D4
+ O

(
1

D5

)
,
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and

ΦR12(r1, θ1) = −R
3
2R

2
1Ṙ1

2D4
+ O

(
1

D5

)
.

Since ΦR21(r2, θ2) and ΦR12(r1, θ1) at order D−4 do not depend on r or θ then ΦR121 and
ΦR212 are both order D−5.

Thus, the part of the two-bubble velocity potential due only to the radial oscillations
of the bubbles is

ΦR(r1, θ1) = ΦR1 (r1, θ1) + ΦR2 (r1, θ1) + ΦR12(r1, θ1) + ΦR21(r1, θ1) + h.o.t.

= −R
2
1Ṙ1

r1
− R2

2Ṙ2

D
− R2

2Ṙ2P1(cos θ1)

D2

(
r1 +

R3
1

2r2
1

)
−R

2
2Ṙ2P2(cos θ1)

D3

(
r2

1 +
2R5

1

3r3
1

)
− R2

2Ṙ2P3(cos θ1)

D4

(
r3

1 +
3R7

1

4r4
1

)
−R

3
1R

2
2Ṙ2

2D4
+ O

(
1

D5

)
.

Similarly, in the local coordinates of bubble 2,

ΦR(r2, θ2) = ΦR1 (r2, θ2) + ΦR2 (r2, θ2) + ΦR12(r2, θ2) + ΦR21(r2, θ2) + h.o.t.

= −R
2
2Ṙ2

r2
− R2

1Ṙ1

D
+
R2

1Ṙ1P1(cos θ2)

D2

(
r2 +

R3
2

2r2
2

)
−R

2
1Ṙ1P2(cos θ2)

D3

(
r2

2 +
2R5

2

3r3
2

)
+
R2

1Ṙ1P3(cos θ2)

D4

(
r3

2 +
3R7

2

4r4
2

)
−R

3
2R

2
1Ṙ1

2D4
+ O

(
1

D5

)
.

A.5. Contribution from bubble translation, ΦT

We now construct the velocity potential for the flow containing two translating
bubbles. We begin with the potential representing translation for a single bubble
while neglecting the presence of any others,

ΦT1 (r1, θ1) = −U1R
3
1

2

cos θ1

r2
1

for bubble 1, and similarly for an isolated bubble 2 we have

ΦT2 (r2, θ2) = −U2R
3
2

2

cos θ2

r2
2

.

To proceed further, we need expressions for ΦT1 and ΦT2 in both local coordinates
(i.e. we need ΦT1 (r2, θ2) and ΦT2 (r1, θ1)). To obtain these expressions, first note that

~r1 =~r2 +~d and r1 cos θ1 − r2 cos θ2 = D (figure 1). As such,

ΦT2 (r1, θ1) = −U2R
3
2

2

(r1 cos θ1 − D)

|~r1 −~d |3

= −U2R
3
2

2
(r1 cos θ1 − D)

[ ∞∑
n=0

rn1
Dn+1

Pn(cos θ1)

]3

=
U2R

3
2

2D2
+
U2R

3
2

D3
r1P1(cos θ1) +

3U2R
3
2

2D4
r2

1P2(cos θ1) + O

(
1

D5

)
.
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Similarly, we have

ΦT1 (r2, θ2) = −U1R
3
1

2D2
+
U1R

3
1

D3
r2P1(cos θ2)− 3U1R

3
1

2D4
r2

2P2(cos θ2) + O

(
1

D5

)
.

A.6. The image terms ΦT12 and ΦT21

Again, we employ formula (A 5) to obtain the image terms of ΦT1 and ΦT2 . Taking
ΦT2 (r1, θ1) to be an undisturbed potential into whose flow we insert bubble 1, formula
(A 5) gives

ΦT21(r1, θ1) =
U2R

3
2

2D3

R3
1

r2
1

P1(cos θ1) +
U2R

3
2

D4

R5
1

r3
1

P2(cos θ1) + O

(
1

D5

)
.

Similarly, taking ΦT1 (r2, θ2) to be an undisturbed potential into whose flow we insert
bubble 2, formula (A 5) yields

ΦT12(r2, θ2) =
U1R

3
1

2D3

R3
2

r2
2

P1(cos θ2)− U1R
3
1

D4

R5
2

r3
2

P2(cos θ2) + O

(
1

D5

)
.

One can show that ΦT21(r2, θ2) and ΦT12(r1, θ1) are of order D−5. Moreover, all higher
image terms are also of order D−5. Therefore, the part of the two-bubble velocity
potential due only to translation of the bubbles is

ΦT (r1, θ1) = ΦT1 (r1, θ1) + ΦT2 (r1, θ1) + ΦT12(r1, θ1) + ΦT21(r1, θ1) + h.o.t.

= −U1R
3
1

2

cos θ1

r2
1

+
U2R

3
2

2D2
+
U2R

3
2P1(cos θ1)

D3

(
r1 +

R3
1

2r2
1

)
+
U2R

3
2P2(cos θ1)

D4

(
3r2

1

2
+
R5

1

r3
1

)
.

Similarly, the translation potential for two bubbles which is valid near bubble 2 is
given by

ΦT (r2, θ2) = ΦT1 (r2, θ2) + ΦT2 (r2, θ2) + ΦT12(r2, θ2) + ΦT21(r2, θ2) + h.o.t.

= −U2R
3
2

2

cos θ2

r2
2

− U1R
3
1

2D2
+
U1R

3
1P1(cos θ2)

D3

(
r2 +

R3
2

2r2
2

)
−U1R

3
1P2(cos θ2)

D4

(
3r2

2

2
+
R5

2

r3
2

)
.

A.7. The total velocity potential including terms of order D−4

By combining the above results and noting that Φ = ΦR+ΦT , the two-bubble velocity
potential valid near bubbles 1 and 2 found to be given by expressions (2.1) and (2.2)
in § 2.

Appendix B. Derivation of the Oguz–Prosperetti virial theorem
This Appendix is devoted to presenting the proof of the theorem in § 3.1. We

highlight the subtle issues that arise due to the fact that, in potential flow, the
tangential component of the fluid velocity may differ from that of an interface
embedded in the fluid, i.e. slip is allowed at the interface.
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n

us

u =   Φ

S

P

Figure 17. Following the fluid versus following the surface.

B.1. Following the interface versus following the fluid

Consider the diagram presented in figure 17. Let the velocity vector of a point, P ,
on the interface, S , be denoted by v. Moreover, let the fluid velocity just above the
interface be given by u = ∇Φ. For an inviscid fluid, the boundary condition required
at an interface is that the normal component of the interface velocity equals the
normal component of the fluid velocity, i.e. n · v = n · u. Hence,

v = vs + n(n · v)
= vs + n(n · u) + us − us
= u+ (vs − us),

where vs and us are the components of v and u respectively that lie in the tangent
plane to the surface at the point P .

We now adopt the following notation: the substantial derivative with respect to
an observer moving with the interface will be given by d/dt ≡ ∂/∂t + v · ∇, whereas
D/Dt ≡ ∂/∂t+ u · ∇ will represent the substantial derivative operator with respect to
an observer moving with the fluid flow. Given the previous result relating v and u we
see that

d

dt
=

D

Dt
+ (vs − us) · ∇s (B 1)

where

∇s = (I − nn) · ∇ = ∇− n(n · ∇).

B.2. Bernoulli’s equation

An important ingredient in the theorem is Bernoulli’s equation, which for an inviscid,
incompressible fluid undergoing irrotational flow is given by

D

Dt
(Φ)− 1

2
u · u+ p′ = 0,

where

p′ =
p− p∞(t)

ρ
.



Pulsation and translation of two gas bubbles 407

We now express Bernoulli’s equation with total derivatives that represent an observer
moving with the interface S . With the aid of equation (B 1) we find

d

dt
(Φ) = (vs − us) · ∇sΦ+ 1

2
u · u− p′. (B 2)

B.3. Proof of the Oguz–Prosperetti virial theorem

Let a represent an arbitrary vector field defined on S and apply the surface Reynolds
transport theorem (see Nadim 1996 for a recent discussion of these surface theorems)
to the integral,

d

dt

∫
S(t)

Φa · dS =

∫
S(t)

d

dt
[Φa] · dS +

∫
S(t)

Φa · d

dt
[dS].

Expanding the two terms on the right-hand side and replacing dS with n dS produces

d

dt

∫
S(t)

Φ(a · n) dS =

∫
S(t)

[
(a · n) d

dt
(Φ) + Φn · d

dt
(a)

]
dS

+

∫
S(t)

Φa · [(∇s · v)n− (∇sv) · n] dS.

We now substitute equation (B 2) for (d/dt)(Φ) and we use equation (B 1) for (d/dt)(a).
Furthermore, we also replace v with u+ (vs − us) which yields

d

dt

∫
S(t)

Φ(a · n) dS =

∫
S(t)

[
((vs − us) · ∇sΦ+ 1

2
u · u− p′)(a · n)

+Φn ·
(

D

Dt
(a) + (vs − us) · ∇sa

)]
dS

+

∫
S(t)

Φa · [(∇s · (u+ vs − us))n− ∇s(u+ vs − us) · n] dS.

Expanding the terms on the right-hand side gives

d

dt

∫
S(t)

Φ(a · n) dS =

∫
S(t)

(a · n)(vs − us) · ∇sΦ dS +
1

2

∫
S(t)

(u · u)(a · n) dS

−
∫
S(t)

p′(a · n) dS +

∫
S(t)

Φn · D

Dt
(a) dS

+

∫
S(t)

Φ(vs − us) · (∇sa) · n dS +

∫
S(t)

Φ(a · n)(∇ · u) dS

+

∫
S(t)

Φ(a · n)(∇s · (vs − us)) dS −
∫
S(t)

Φa · (∇u) · n dS

−
∫
S(t)

Φa · (∇s(vs − us)) · n dS.

The ∇s in the sixth and the eighth terms on the right-hand side were replaced with
the full ∇ because it can be shown that

(a · n)(∇ · u)− a · (∇u) · n = (a · n)(∇s · u)− a · (∇su) · n.
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Next let w = vs− us and recall that ∇ · u = 0. After rearranging the order of the terms
we get

d

dt

∫
S(t)

Φ(a · n) dS =

∫
S(t)

Φ

[
n · D

Dt
(a)− a · (∇u) · n

]
dS +

1

2

∫
S(t)

(u · u)(a · n) dS

−
∫
S(t)

p′(a · n) dS +

∫
S(t)

(a · n)w · ∇sΦ dS

+

∫
S(t)

Φw · (∇sa) · n dS +

∫
S(t)

Φ(a · n)(∇s · w) dS

−
∫
S(t)

Φa · (∇sw) · n dS. (B 3)

To arrive at the refined Oguz–Prosperetti theorem we see that the sum of the last
four integrals on the right-hand side must vanish. Hence, we must have∫

S(t)

[(a · n)w · ∇sΦ+ Φw · (∇sa) · n+ Φ(a · n)(∇s · w)− Φa · (∇sw) · n] dS = 0.

Under what conditions is this expression equal to zero? If a no-slip condition is
imposed at the interface then w = vs − us = 0 and each of the four terms vanishes.
Alternatively, if tangential slip is allowed at the interface then w 6= 0, and to answer
the question we note the following:∫

S(t)

[(a · n)w · ∇sΦ+ Φw · (∇sa) · n+ Φ(a · n)(∇s · w)− Φa · (∇sw) · n] dS

=

∫
S(t)

∇s · [Φ(a · n)w] dS −
∫
S(t)

Φw · (∇sn) · a dS −
∫
S(t)

Φa · (∇sw) · n dS.

For a closed surface, S , the first integral on the right-hand side is identically equal
to zero by the surface divergence theorem (Nadim 1996). Moreover, if a = fn where
f : S → R then the last two terms on the right-hand side also vanish identically
because

(i) (∇sn) · n = 1
2
∇s(n · n) = 0,

(ii) n · ∇s = 0.

So if a = fn then no input concerning the relative tangential velocity of the interface
is required in order to use the Oguz–Prosperetti virial theorem. In other words, while
Oguz & Prosperetti allow a to be an arbitrary vector field, we find that it must be
of the form a = fn in order to make the result independent of whether or not the
tangential velocities of the fluid and the interface are the same. Equation (3.1) is
obtained from taking a = fn in (B 3).

Appendix C. Alternative derivation of the equations of motion
In this Appendix, we calculate the pressure in the liquid outside two pulsating and

translating bubbles. Averaging the liquid pressure on the bubble surfaces yields the
equations governing the radii of each bubble. Moreover, by using the liquid pressure
to obtain the force on each bubble, we can also obtain the translation equations for
the bubble centres.



Pulsation and translation of two gas bubbles 409

Bernoulli’s equation for the pressure in the fluid is

pL − p∞(t)

ρ
= −

(
∂Φ

∂t

)
~x

− 1
2
‖∇~x Φ‖2, (C 1)

where ~x denotes fixed laboratory coordinates. Since the local bubble coordinates
are in motion relative to the fixed laboratory coordinates, the derivatives transform
according to

∇~x = ∇~r,
(
∂

∂t

)
~x

=

(
∂

∂t

)
~r

−U · ∇~r.

By substituting the two-bubble potential Φ(r1, θ1) into Bernoulli’s equation (C 1), and
evaluating at r = R1, we obtain an expansion for the liquid pressure at the surface of
bubble 1:

p′1 = R1R̈1 + 3
2
Ṙ2

1 +
2R2Ṙ

2
2 + R2

2R̈2

D
− R2

2Ṙ2(3U1 + 3U2 + 2Ḋ) + R3
2U̇2

2D2
− U2

1

4

+ 1
2
P1(cos θ)

[
R1U̇1 + 3Ṙ1U1 +

3R1R
2
2R̈2 + 6R1R2Ṙ

2
2 + 3R2

2Ṙ1Ṙ2

D2

]
+P2(cos θ)

[
3
4
U2

1 +
3R2

2Ṙ2U1

2D2

]
+ O

(
1

D3

)
. (C 2)

The average of p′1 over the surface of bubble 1 is just the first line of (C 2), which leads
to exactly the same radial equation as in § 3.2 (note that the averages of P1(cos θ) and
P2(cos θ) vanish).

Next, the force on each bubble is given by F = − ∫
S
pLn dS where the integral is

over the surface of the bubble and n is the outward unit normal to the bubble surface.
In the local bubble coordinates we can express this force as

F = −
∫ 2π

0

∫ π

0

pLêrR
2 sin θ dθ dφ.

The component of this force, Fz , directed along the line connecting the centres of the

bubbles (Fz is the projection of F onto d = Dk̂) is given by

Fz = −2πR2

∫ π

0

pL cos θ sin θ dθ = −πR2

∫ π

0

pL sin(2θ) dθ.

Employing expression (C 2) for the pressure we can calculate the force on bubble 1:

Fz = −2πρ

[
d

dt

(
R3

1U1

3
+
R3

1R
2
2Ṙ2

D2

)
− 2R2

1Ṙ1R
2
2Ṙ2

D2

]
,

where terms of order D−2 have been kept. This expression for the force on a bubble
is in fact in agreement with the translation equations derived in § 3.3, for if we let ρg
represent the density of the gas inside the bubble, then

d

dt
( 4

3
πR3

1ρgU1) = Fz

governs the motion of the bubble. But since ρg/ρ � 1 the motion of the bubble is
approximated well by Fz ≈ 0, which exactly yields the translation equation (3.7). The
forces acting on a pulsating and translating bubble in a potential flow have also been
examined by Lhuillier (1982), see also Nigmatulin (1991).
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Appendix D. Calculation of the averaging parameters β and γ
D.1. Calculation of β

Let Wj = ω2
j0 − Ω2 for j = 1, 2 and recall that

X1 =
(W2 + iΩζ2)P1 + ε1Ω

2P2

(W1 + iΩζ1)(W2 + iΩζ2)− ε1ε2Ω4
=
z1

Q
=
‖z1‖ eiθ1

‖Q‖ eiα
=
‖z1‖
‖Q‖ ei(θ1−α) = δ1 eiψ1

and

X2 =
(W1 + iΩζ1)P2 + ε2Ω

2P1

(W1 + iΩζ1)(W2 + iΩζ2)− ε1ε2Ω4
=
z2

Q
=
‖z2‖ eiθ2

‖Q‖ eiα
=
‖z2‖
‖Q‖ ei(θ2−α) = δ2 eiψ2 .

Note that ψ1 − ψ2 = (θ1 − α)− (θ2 − α) = θ1 − θ2. Hence,

β = 2πρΩ2R3
10R

3
20δ1δ2 cos(ψ1 − ψ2)

= 2πρΩ2R3
10R

3
20δ1δ2 cos(θ1 − θ2)

= 2πρΩ2R3
10R

3
20δ1δ2(cos θ1 cos θ2 + sin θ1 sin θ2)

= 2πρΩ2R3
10R

3
20

‖z1‖
‖Q‖
‖z2‖
‖Q‖

(
Re(z1)

‖z1‖
Re(z2)

‖z2‖ +
Im(z1)

‖z1‖
Im(z2)

‖z2‖
)

= 2πρΩ2R3
10R

3
20

(
Re(z1) Re(z2) + Im(z1) Im(z2)

‖Q‖2

)
= 2πρΩ2R3

10R
3
20

(W2P1 + ε1Ω
2P2)(W1P2 + ε2Ω

2P1) + Ω2P1P2ζ1ζ2

(W1W2 − Ω2ζ1ζ2 − ε1ε2Ω4)2 + (W1Ωζ2 +W2Ωζ1)2
.

Recall that ε1 and ε2 depend on D via (4.7).

D.2. Calculation of γ

Following the same line of reasoning as above we obtain

γ = 3πρΩR3
10R

3
20δ1δ2 sin(ψ1 − ψ2)

= 3πρΩR3
10R

3
20δ1δ2 sin(θ1 − θ2)

= 3πρΩR3
10R

3
20δ1δ2(sin θ1 cos θ2 − sin θ2 cos θ1)

= 3πρΩR3
10R

3
20

‖z1‖
‖Q‖
‖z2‖
‖Q‖

(
Im(z1)

‖z1‖
Re(z2)

‖z2‖ −
Im(z2)

‖z2‖
Re(z1)

‖z1‖
)

= 3πρΩR3
10R

3
20

(
Im(z1) Re(z2)− Im(z2) Re(z1)

‖Q‖2

)
= 3πρΩR3

10R
3
20

Ωζ2P1(W1P2 + ε2Ω
2P1)− Ωζ1P2(W2P1 + ε1Ω

2P2)

(W1W2 − Ω2ζ1ζ2 − ε1ε2Ω4)2 + (W1Ωζ2 +W2Ωζ1)2
.
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